三角高程测量原理及计算

  • A+
所属分类:实操图文
还没添加站长微信的请抓紧

1、测量原理

三角高程测量的基本原理 ,A、B为地面上两点,自A点观测B点的竖直角为α1.2,S0为两点间水平距离,i1为A点仪器高,i2为B点觇标高,则A、B两点间高差为:

h1.2=S0tga1.2+i1-i2

上式是假设地球表面为一平面,观测视线为直线条件推导出来的。在大地测量中,当两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响。 三角高程测量,一般应进行往返观测(双向观测),它可消除地球曲率和大气折光的影响。

为了提高三角高程测量的精度,通常采取对向观测竖直角,推求两点间高差,以减弱大气垂直折光的影响。

2、操作步骤

2.1、观测

在测站上安置经纬仪,量取仪器高iA;在目标点上安置标杆或觇牌,量取觇标高VB。iA和VB用小钢卷尺量2次取平均,读数至1mm。用经纬仪望远镜中丝瞄准目标,将竖盘水准管气泡居中,读竖盘读数,盘左盘右观测为一测回,此为中丝法。竖直角观测的测回数及限差规定见表7-1。

表7-1 竖直角观测测回数与现差

三角高程测量原理及计算

三角高程测量原理及计算 三角高程测量原理及计算

3、计算方法

由三角高程测量结果计算两点间的高差时,是以椭球面为依据,这样求得的高差是椭球面高差。如图2,A、B两点对于椭球面的高程分别为 H1和H2。首先略去垂线偏差不计,设由A点向B点观测的天顶距为Z1(或高度角α1 =90°-Z1),该两点在椭球面上的投影A0和B0相距的弧长为S0,A0B0弧的曲率半径为R0,则A和B的高差是: 式中项是地球曲率的影响;项是大气折光的影响;k是折光系数,通常采用平均值k=0.10~0.16。

以上是由A 点向B 点观测天顶距Z1(或高度角α 1),求定该两点间高差的情况,称为单向三角高程测量。若在A、B两点间互相观测天顶距Z1和Z2(或高度角α 1和α 2),求定该两点间的高差,则称为对向三角高程测量。采用对向三角高程测量由于观测是在同样情况下进行的,两相对方向上的折光系数k可以认为近似相同,因而可以不必考虑折光改正项。特别是在同一时间内进行对向观测时,椭球面高差h的公式简化为: 。

在对向三角高程测量中,假定相对方向上的折光系数相同,固然不一定完全符合实际情况,但比单向三角高程测量中应用k的估值要可靠得多。因此,一般都采用对向三角高程测量。

以上的高差公式中,未顾及测站的垂线偏差对于观测天顶距的影响。在平坦地区采用对向三角高程测量,这种影响很小。此外,从公式推导过程来看,所求出的高差是椭球面高差,要化算为正高或正常高系统中的高差,还须加入改正。

在三角网或导线网中,由三角高程测量可以测定两点之间的椭球面高差,若再由水准测量求出这些点对于大地水准面的高程,则可得出各点上大地水准面对于椭球面的差距。因此,从理论上来看,三角高程测量也是一种测定地球形状的手段,它不依赖于任何假定。但由于人们一般不能以足够精度测定折光系数,因此三角高程测量迄今只能用于测定低精度的高差。

提高三角高程测量精度的措施有四项:

 

此处为隐藏的内容!
登录后才能查看!

 

  • 我的微信
  • 这是我的微信扫一扫
  • weinxin
  • 我的微信公众号
  • 我的微信公众号扫一扫
  • weinxin
avatar

发表评论

您必须登录才能发表评论!